Empirical problems of the hierarchical likelihood ratio test for model selection.

نویسنده

  • Diego Pol
چکیده

Advocates of maximum likelihood (ML) approaches to phylogenetics commonly cite as one of their primary advantages the use of objective statistical criteria for model selection. Currently, a particular implementation of the likelihood ratio test (LRT) is the most commonly used model-selection criterion in phylogenetics. This approach requires the choice of a starting point and a parameter addition (or removal) sequence that can affect all ML inferences (i.e., topology, model, and all evolutionary parameters). Here, several alternative starting points and parameter sequences are tested in empirical data sets to assess their influence on model selection and optimal topology. In the studied data sets, varying model-selection protocols leads to selection of different models that, in some cases, lead to different ML trees. Given the sensitivity of the LRT, some possible solutions to model selection (within the hypothesis testing approach) are outlined, and alternative model-selection criteria are discussed. Some of the suggested alternatives seem to lack these problems, although their behavior and adequacy for phylogenetics needs to be further explored.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vector Autoregressive Model Selection: Gross Domestic Product and Europe Oil Prices Data Modelling

 We consider the problem of model selection in vector autoregressive model with Normal innovation. Tests such as Vuong's and Cox's tests are provided for order and model selection, i.e. for selecting the order and a suitable subset of regressors, in vector autoregressive model. We propose a test as a modified log-likelihood ratio test for selecting subsets of regressors. The Europe oil prices, ...

متن کامل

Modified signed log-likelihood test for the coefficient of variation of an inverse Gaussian population

In this paper, we consider the problem of two sided hypothesis testing for the parameter of coefficient of variation of an inverse Gaussian population. An approach used here is the modified signed log-likelihood ratio (MSLR) method which is the modification of traditional signed log-likelihood ratio test. Previous works show that this proposed method has third-order accuracy whereas the traditi...

متن کامل

A New Model Selection Test with Application to the Censored Data of Carbon Nanotubes Coating

Model selection of nano and micro droplet spreading can be widely used to predict and optimize of different coating processes such as ink jet printing, spray painting and plasma spraying. The idea of model selection is beginning with a set of data and rival models to choice the best one. The decision making on this set is an important question in statistical inference. Some tests and criteria a...

متن کامل

Prioritizing Contractors Selection Using DEA-R and AHP in Iranian Oil Pipelines and Telecommunication Company

Inthis article we offer a method of ranking contractors by using DEA based onanalysis deficit and AHP. The process of hierarchical analysis (AHP) byproviding scales from paired comparison matrix, performs the contractor’sprioritizing choice. But AHP has some problems and to solve those problems,Jahanshahloo and his colleagues presented a new model which uses DEA andstandard deviation. In this a...

متن کامل

Parametric Empirical Bayes Test and Its Application to Selection of Wavelet Threshold

In this article, we propose a new method for selecting level dependent threshold in wavelet shrinkage using the empirical Bayes framework. We employ both Bayesian and frequentist testing hypothesis instead of point estimation method. The best test yields the best prior and hence the more appropriate wavelet thresholds. The standard model functions are used to illustrate the performance of the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Systematic biology

دوره 53 6  شماره 

صفحات  -

تاریخ انتشار 2004